Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces.
نویسندگان
چکیده
Molecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local minimum is shifted to lower shear rates. We found that the ratio of the shear viscosity to the slip length, which defines the friction coefficient at the liquid/solid interface, undergoes a transition from a nearly constant value to power law decay as a function of the slip velocity. In a wide range of shear rates and fluid densities, the friction coefficient is determined by the product of the value of the surface-induced peak in the structure factor and the contact density of the first fluid layer near the solid wall.
منابع مشابه
Rheological study of polymer flow past rough surfaces with slip boundary conditions.
The slip phenomena in thin polymer films confined by either flat or periodically corrugated surfaces are investigated by molecular dynamics and continuum simulations. For atomically flat surfaces and weak wall-fluid interactions, the shear rate dependence of the slip length has a distinct local minimum which is followed by a rapid increase at higher shear rates. For corrugated surfaces with wav...
متن کاملRelationship between induced fluid structure and boundary slip in nanoscale polymer films.
The molecular mechanism of slip at the interface between polymer melts and weakly attractive smooth surfaces is investigated using molecular dynamics simulations. In agreement with our previous studies on slip flow of shear-thinning fluids, it is shown that the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that at suffic...
متن کاملShear rate threshold for the boundary slip in dense polymer films.
The shear rate dependence of the slip length in thin polymer films confined between atomically flat surfaces is investigated by molecular dynamics simulations. The polymer melt is described by the bead-spring model of linear flexible chains. We found that at low shear rates the velocity profiles acquire a pronounced curvature near the wall and the absolute value of the negative slip length is a...
متن کاملStructures, solvation forces and shear of molecular films in a rough nano-confinement
Investigations of surface roughness effects on the structure, dynamics and rheology of a molecular fluid (hexadecane) confined between solid (gold) surfaces, through the use of large-scale molecular dynamics simulations, reveal a remarkable sensitivity to the confining surface morphology. A most significant reduction of the ordering propensity is found in films confined by stationary rough surf...
متن کاملWall Slip and Boundary Effects in Polymer Shear Flows
Polymer – surface interactions strongly influence many important industrial and rheological flows. In particular, polymer melts and solutions slip against the surface; this has long been associated with sharkskin and spurt in extrusion, and recent experimental observations suggest that slip also plays a role in the formation of enhanced concentration fluctuations in entangled polymer solutions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 77 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2008